Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu logo faccejpi Déroulé - logo Faccejpi


Zone de texte éditable et éditée et rééditée


Securing yield stability of Brassica crops in changing climate conditions

Extreme and variable climate conditions are expected to become more frequent worldwide with projected climate change. European agriculture is facing the crucial challenge of adapting crop productivity to climate change and will need the development of crops with increased resilience to abiotic stress factors triggered by climate change. Crop yield stability is dependent on the response of key developmental and growth processes to stress conditions. Delayed or accelerated flowering time, alteration of root architecture and growth, and disruption of pod-shattering are common responses displayed by crops exposed to high temperature or drought conditions associated to climate change. SYBRACLIM will evaluate the impact of these environmental factors on developmental and physiological processes directly influencing the yield of oilseed rape, Europe’s premium oilseed crop. We will also shed light on the genetic and molecular bases of the tolerance of different rapeseed varieties to increasing temperature and drought stress. The SYBRACLIM consortium is multidisciplinary and includes both commercial breeding companies and leading research groups with high complementarities that cover the fields of genetics, genomics, physiology, breeding and agronomy in Brassica crops along with modeling of crop performance under climate change. Rapeseed is one of the world’s most important sources of high-quality vegetable oils for human nutrition and biofuels, and particularly in Europe is also a major contributor to vegetable protein diets for ruminant livestock. SYBRACLIM will implement a multidisciplinary and innovative approach to characterize the phenotypic changes related to flowering time, root development and pod shattering in response to increased temperature and drought, and to analyse the productivity (yield, oil and protein content) in rapeseed varieties. We will also use genomics-assisted selection of stress-tolerance traits in controlled environments and field trials. The relationship between performance and variability of the studied developmental processes will allow us to identify new genetic traits associated with adaptation and use them to design stress tolerant rapeseed crops by complementary plant breeding and biotechnology strategies. Finally, we will integrate all these environmental, phenotypic and productivity data in models that will assess the performance of rapeseed varieties across different climate conditions. These models will be applied to simulate expected performance of rapeseed traits under projected climate change scenarios. Because breeders need decades to develop new varieties, this approach will enable anticipatory breeding for early development of germplasm carrying the necessary genetic variation to cope with climatic changes. SYBRACLIM will provide tools to allow the farmers to design better strategies for adapting cropping systems to climate change, contributing to secure yield of Brassica crops in Europe.

Coordinator: Monica Pernas Ochoa, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain


  • Lars Østergaard, John Innes Centre (JIC), United Kingdom
  • Rod  Snowdon, Justus-Liebig University, Giessen (JLU), Germany
  • Jørgen Eivind Olesen, Aarhus University (AU), Denmark
  • Alain Bouchereau, INRA (Institut National de la Recherche Agronomique) UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection), France
  • Gunhild Leckband, NPZ Innovation GmbH i.G. (NPZi), Germany
  • Miroslav Trnka, Global Change Research Centre AS CR v.v.i. (GCRC), Czech Republic

Requsted funding: 1670k€